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Abstract. We calculate the instanton contribution to the proton strangeness in an MIT bag enriched by
the presence of a dilute instanton liquid. The evaluation is based on the expression of the nucleon matrix
elements of bilinear strange-quark operators in terms of a model valence nucleon state and the interactions
producing quark–antiquark fluctuations on top of that valence state. Our method combines use of the the
evolution operator containing a strangeness source and the Feynman–Hellmann theorem. It enables one to
evaluate the strangeness in different Lorentz channels in essentially the same way. Only the scalar channel
is found to be affected by the interaction induced by the random instanton liquid.

1 Introduction

Despite the accumulated evidence for the nucleon stran-
geness, there has been as yet no balanced understand-
ing of its various appearances. By a particular nucleon
strangeness we mean the value of the nucleon matrix el-
ement 〈N |Os(Γ )|N〉, where the bilinear Os(Γ ) = s̄Γ s
might represent scalar, pseudoscalar, vector, axial vector
or tensor strange-current densities (Γ = 1, γ5, γµ,
γµγ5, σµν). Thus, any interaction LI that induces ss̄ pairs
in the nucleon state |N〉 potentially leads to various types
of nucleon strangeness. The imaginable interactions LI ,
which are related to QCD-vacuum fluctuations, might pre-
fer some of the strangeness channels. In particular, there
is a conjecture [1] that a nontrivial QCD-vacuum struc-
ture selects the pseudoscalar and scalar channels, which
experience the axial and trace anomaly, respectively. In
the present paper we focus on QCD-vacuum fluctuations
as given by the instanton-liquid model [2–4], i.e., we take
LI → Linst. Such an interaction generates an s-quark loop
(schematically shown in Fig. 1) to which an external probe
can couple. It is important that this interaction can be
treated perturbatively; this enables us to compare its rel-
ative contributions to different strangeness channels. The
relatively complicated interaction LI = Linst (given by
(22)–(24) below) is conveniently split into three pieces,

LI = L1 + L2 + L3 , (1)

where the parts illustrated in Fig. 1 refer to the one-,
two- and three-body operators. These operators change
the known valence (model) state |N0〉 to the state |N〉
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Fig. 1. Instanton-induced local strangeness represented by
the effective one-, two- and three-body operators. Non-strange
quarks are denoted by solid lines, and strange ones by dashed
lines

containing the ss̄ pairs. Then we provide an expression
(19) suitable for computing the strange matrix element of
the full nucleon state, 〈N | : s̄Γ s : |N〉.

The current evidence for the strangeness content of the
proton comes from the external probe at both low- and
high-momentum transfers. The analysis of the term σπN

in low-energy πN scattering reveals comparable light- and
strange-quark nucleon matrix elements [1] (N means the
proton throughout this paper):

〈N |ūu|N〉 ' 4.8 ,

〈N |d̄d|N〉 ' 4.1 ,

〈N |s̄s|N〉 ' 2.8 , (2)

i.e., the unexpectedly large scalar strangeness. A poste-
riori, it is found to be in accordance with QCD-vacuum
characteristics [1], as represented, for example, by the (na-
ive) bag-model relation [5]

〈N |s̄s|N〉 = −〈0|s̄s|0〉V, (3)

or the QCD sum-rule result [6] :

〈N |s̄s|N〉 ' 2.4 . (4)
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Fig. 2. Nonvanishing nucleon strangeness due to a response of
the valence nucleon state to a strangeness source at Γ (denoted
by ×), i.e., to a probe coupled to strange quarks through Γ .
More precisely, this graph is that part of the nucleon response
which arises only through one interaction LI

The other piece of evidence for the strangeness content of
the proton comes from the polarized lepton–nucleon scat-
tering at relatively high-momentum transfer, higher than
the scales pertinent for our considerations. The analysis
[7] of new data supports the original EMC findings [8,9],
revealing a nonvanishing fraction ∆s = −0.11±0.06 of the
proton spin Sµ carried by the s quark. This is significant in
comparison with ∆u = 0.82±0.06 and ∆d = −0.44±0.06.
∆s is related to the axial strangeness of the proton, de-
fined as 〈N |s̄γµγ5s|N〉 = ∆s Sµ.

The vector strangeness, described by the Dirac and the
Pauli form factors as

〈N |s̄γµs|N〉 = ūN (p′)
[
F s

1 (q2)γµ + F s
2 (q2)

iσµνqν

2MN

]
uN (p),

(5)
can be related to the analogous flavour singlet (0) and the
hypercharge (8) form factors for 〈N |V (0,8)

µ |N〉 through

s̄γµs = V (0)
µ − 2V (8)

µ ,

V (0)
µ =

1
3
q̄γµq , V (8)

µ =
1√
3
q̄γµ

λ8

2
q . (6)

Although F s
1 (0) = 0 is the net nucleon strangeness, its

momentum dependence determines the strangeness radius

r2
s = 6

d
dq2 F s

1 (q2)

∣∣∣∣∣
q2=0

, (7)

while the strange magnetic moment is given by

µs = F s
2 (0) . (8)

Note the relation F s
2 = F

(0)
2 − (2/

√
3)F (8)

2 , where the last
term is constrained by (2/

√
3)F (8)

2 = κp + κn = −0.12.

Knowledge of the F
(0)
2 flavour singlet term would also en-

able one to determine the baryomagnetic moment

µ(0)
p = F

(0)
1 (0) + F

(0)
2 (0) = (1 + F

(0)
2 ) µN (9)

There are many varying model-dependent calculations
[10–22] of the quantities listed above. By deriving (19)–
(20) in the next section, we provide a framework which
is rather general, in that it can be applied to different
quark models and flavor-mixing interactions LI . We illus-
trate its usage on the examples of the MIT bag model
and instanton-induced interaction. At least in principle,
this framework also puts all Lorentz channels on an equal
footing, depending on which Γ is plugged into (19)–(20).

2 Nucleon strangeness induced on top
of the valence quark state

It is not very surprising, in light of the nonvanishing quark
scalar condensates in nonperturbative QCD, that some
matrix elements 〈N |sΓs|N〉 can be markedly different
from zero. The vacuum expectation value of s̄s is ap-
proximately as large as for non-strange quarks: 〈0|s̄s|0〉 ≈
〈0|ūu|0〉 = 〈0|d̄d|0〉, i.e., roughly equal to or even more
negative than (−200MeV)3. The MIT bag model provides
a good illustration of how this leads to a large 〈N |s̄s|N〉
[5]. However, there may also be ss̄ pairs other than those
from the QCD-vacuum condensate, so that normally-
ordered strange operators can, in principle, also have non-
vanishing nucleon matrix elements.

Since we are interested in the ss̄ pairs that may exist
in addition to those from the (nonperturbative) vacuum
channel, it is convenient to define the normal ordering with
respect to the nonperturbative vacuum |0〉:

: q̄Γ q : = q̄Γ q − 〈0|q̄Γ q|0〉 . (10)

Ideally, this referent vacuum state |0〉 would be the true
nonperturbative vacuum of QCD, but since in this paper
we are concerned with quark models imitating QCD, (10)
will mean in practice that the normal ordering is taken
with respect to a model vacuum state. By this we mean
the ground nucleon state from which the valence quarks
are removed (for example, the “empty bag” in the case
of the MIT bag model). For the strange quarks, the nor-
mal ordering with respect to this referent vacuum state |0〉
is equivalent to the normal ordering with respect to the
model nucleon ground state |N0〉 composed of the non-
strange valence quarks only. Of course, such a definition
of normal ordering is then necessarily tied to the charac-
teristic hadronic scale of ∼ 1 GeV, at which the nonper-
turbative QCD effects dominate, and at which (and also
below which) quark models provide a reasonable descrip-
tion of the nucleon bound state.

Figure 2 illustrates how a nonvanishing value not only
of 〈N |s̄Γ s|N〉, but also of the normally-ordered 〈N | : s̄Γ s :
|N〉, can then come about: At the instant t = t0 the com-
posite nucleon is hit by an external probe (e.g., a neutrino
[23]) with the coupling Γ to strange quarks. Owing to an
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interaction capable of producing ss̄ fluctuations, the nu-
cleon state |N〉 at the time slice t = t0 obviously contains
not only the valence quarks uud, but also the s-quark loop
to which the external probe can also couple.

Let us schematically write down the full nucleon (pro-
ton) state, which is also coupled to the strangeness-sensi-
tive probe:

|N〉 =
1
N

( ∞∑
X=0

CX |uud X〉 +
∞∑

X=0

Css̄X |uud ss̄ X〉
)

≡ 1
N (|N0〉 + |δN〉) . (11)

Here, X (starting from X = |0〉, the complicated nonper-
turbative QCD vacuum) symbolizes any number of var-
ious perturbative and nonperturbative gluon and quark
configurations, including quark–antiquark pairs and, in
particular, strange pairs which escape detection by this
probe. These complicated configurations “dress” quarks
(q = u, d, s, ...) into their effective counterparts, con-
stituent quarks Q = U , D, S, ... . In terms of the con-
stituent quarks, this part, unperturbed by the strangeness-
sensitive probe, is just the valence part |N0〉 = |UUD〉
when the nucleon is a proton. It is obvious in terms of the
constituent quarks that 〈N0| : s̄Γ s : |N0〉 = 0. The one
strange pair detected at Γ has been explicitly denoted
by ss̄ in the |δN〉 part of the nucleon state perturbed by
the probe. |δN〉 can be viewed as the response of |N0〉 to
the weakly coupled strangeness-sensitive probe. The co-
efficients CX , Css̄X denote the amplitudes of states with
various admixtures X or ss̄ X. N is the normalization.
This response makes it possible for the total nucleon Γ
strangeness 〈N |s̄Γ s|N〉 to also receive a nonvanishing con-
tribution from the nonvacuum channel 〈N | : s̄Γ s : |N〉.

However, the question is how to get the nucleon state
in sufficiently specific terms in order to have a calcula-
ble expression for 〈N | : sΓs : |N〉. A viable approach is
to resort to a constituent model of hadrons. The idea of a
constituent model is that the whole mess of fluctuations X
is, by some model parameterization, lumped into dressing
of constituent quarks Q, as well as into effective model
interactions, or a mean field they feel. The valence pro-
ton state |N0〉 would then be identified with the model
ground eigenstate |UUD〉 built up only of non-strange ef-
fective quarks (so that 〈N0| : sΓs : |N0〉 = 0, even though
possibly 〈N0|sΓs|N0〉 6= 0, at least for Γ = 1, owing to
the strange vacuum condensate). Let us denote all possi-
ble higher eigenstates of some model Hamiltonian H0 by
|k〉:
H0|N0〉 = EN0 |N0〉, H0|k〉 = Ek|k〉, Ek > EN0 . (12)

The Hamiltonian H0 is responsible for the formation of
(model) hadron states composed of definite, fixed num-
bers of quarks. In the simplest case, we can imagine H0
as consisting of a sum of one-body quark operators, typ-
ically of, say, the effective-quark kinetic-energy operator
and the mean, or self-consistent, field in which the dressed
valence quarks would move. For example, H0 could be
the static bag-model Hamiltonian. |N0〉 would then be the

bag-model nucleon in its ground state, and |k〉 all higher
bag states with definite numbers of constituents. In any
case, H0 defines the nucleon model – possibly together
with some other ingredients (such as the confining bound-
ary condition in bag models).

What H0 cannot do is produce ss̄ fluctuating pairs.
To produce such pairs, we have to supplement H0, defin-
ing the model one starts from, by some Hamiltonian HI

(corresponding to the Lagrangian density LI) that can
produce ss̄ excitations on top of |N0〉. This means that
LI , and thus also HI , contains strange-quark field oper-
ators bilinearly, so that it can connect |N0〉 with |δN〉
containing ss̄ pairs.

To clarify that introducing LI does not lead to double-
counting, let us repeat that H0 is just a model Hamilto-
nian, the parameters of which should mimic the effects
of full, true nonperturbative QCD as much as possible.
For example, if H0 is the Hamiltonian of the nonrelativis-
tic naive constituent quark model, it must contain the
postulated mass parameter of the constituent quark mass
MQ ≈ MN0/3. The corresponding quantity in the true
theory, the dynamically generated quark mass, is (in prin-
ciple) the result of all possible QCD interactions, so that
the interactions related to HI can, in real QCD, also con-
tribute to this mass by contributing to the ss̄ fluctuations.
The dynamically generated non-strange quark mass must
be close to the model constituent quark mass parameter
MQ sitting in H0, and only in such implicit, indirect ways
are interactions like HI present in H0; however, they are
not present explicitly, and, in fact, H0 cannot produce any
ss̄ fluctuations at all. Therefore, if we want to study the
ss̄ fluctuations, we must introduce HI to enrich the model
nucleon with SS̄ fluctuations on top of |N0〉.

In order to obtain the expression for 〈N | : s̄Γ s : |N〉
by utilizing the Feynman–Hellmann theorem [24,25], let
us define an auxiliary perturbation Hamiltonian H ′ by
adding to HI a source term for the strange operator we
want to calculate in the “full” nucleon state |N〉:

H ′ ≡ HI + λ⊗ < sΓs >, (13)

where < sΓs > is the convenient abbreviation

< sΓs >≡
∫

s(x)Γs(x) d3x . (14)

The generic form λ ⊗ Γ can mean any of the cases λ14,
λµγµ, λ5µγµγ5, λµνσµν , etc.

Then we use the auxiliary perturbation Hamiltonian
as the interaction Hamiltonian in the evolution operator
U(t2, t1). The perturbation expansion of this operator is

U(t2, t1) = 1 +
∞∑

n=1

U (n)(t2, t1)

= T̂

{
1 +

∞∑
n=1

in

n!

[ ∫ t2

t1

:Lint(t) : dt
]n}

. (15)

Here, T̂ denotes the time-ordering operator and Lint(t) =∫ Lint(x, t)d3x = −Hint(t) is the interaction Lagrangian
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to be replaced with the form containing the strangeness
sources, as in the definition of H ′ (13):

L(t)int → L′(t) = LI(t) − λ⊗ < sΓs(t) >

=
∫

d3x
[
LI(x) − λ ⊗ s(x)Γs(x)

]
.(16)

The Feynman–Hellmann theorem then enables one to
understand the nucleon matrix elements of the strange-
current densities, 〈N | : sΓs : |N〉, as the response (to
the strange-current source) of the 〈N0(t → +∞)|N0(t →
−∞)〉 transition amplitude of the model ground
state |N0〉. For example, in the case of the second-order
term in (15), the substitution (16) leads to

U (2)(+∞,−∞)=−1
2

T̂

∫ +∞

−∞
dt

∫ +∞

−∞
dt′
[

:LI(t) : :LI(t′) :

− λα :< s̄γαs(t) >: :LI(t′) : − :LI(t) : λβ :< s̄γβs(t′) >:

+ λαλβ :< s̄γαs(t) >: :< s̄γβs(t′) >:
]

. (17)

For definiteness, the above expression for U (2) has been
written for the vector strange-current density. The first-
order contribution to the vector nucleon strangeness can
then be obtained by considering

∂

∂λµ
〈N0|U (2)(+∞,−∞)|N0〉

∣∣∣∣∣
λµ=0

. (18)

In general, for any matrix Γ in the spinor space, the
strange nucleon matrix element of the full nucleon state
|N〉 is, to the two lowest orders (due to the U (2) and U (3)

terms), given by

〈N | : sΓs : |N〉 = i
∫ +∞

−∞
dt′ 〈N0|T̂ :< sΓs(t0) >:

× :LI(t′) : |N0〉 − 1
2

∫ +∞

−∞
dt′
∫ +∞

−∞
dt′′

× 〈N0|T̂ :< sΓs(t0) >: :LI(t′) : :LI(t′′) : |N0〉. (19)

Obviously, the nonvanishing contributions to (19) oc-
cur only when the strange-quark fields are fully contracted.
For example, the integrand of the first term in (19), writ-
ten in terms of space integrals over the contracted strange-
current and Lagrangian densities, is∫

d3xd3x′〈N0|T̂ : s(x)Γs(x) : : LI(x′) : |N0〉

=
∫

d3xd3x′〈N0| :
︷ ︸︸ ︷
s(x)Γ s(x)LI︸ ︷︷ ︸(x′) : |N0〉 , (20)

where the contractions are indicated by over- and un-
derbraces, and t0 ≡ x0 and t′ ≡ x′

0, for consistency
of the notation. So, the first term in (19) corresponds
to Fig. 2, since these contractions, or time-ordered pair-
ings, are, of course, the propagators of strange quarks. In
the second term, the two contractions must connect the

LILI

�

K

�

N0 N0

Fig. 3. A response of the valence nucleon state |N0〉 to a
strangeness source at Γ through two interactions LI . This type
of contribution can be associated with the kaon-loop contribu-
tion to the nucleon strangeness (a possible KΛ intermediate
state is therefore indicated)

strangeness source at Γ with two different, separately-
normally-ordered-interaction Lagrangian densities which
act as “sinks” for strangeness at two different points of the
valence–quark lines. In any case, there must be an addi-
tional strange-quark contraction between these two : LI :,
and this completes the strange-quark loop. Fig. 3 shows
an example of the graphs originating from the second term
of (19), namely the U (3) contribution. Clearly, in this way,
one can generate contributions corresponding to kaon–
baryon loops in the approaches employing hadron degrees
of freedom. Below, we will use a strangeness-generating
interaction LI that is perturbative, so that we do not ex-
pect sizable contributions to the ss̄ effects from the second
order in LI . In addition to that, there are indications that
the contributions related to strange-meson loops should
be rather small, even when one does not restrict oneself
to perturbative ss̄-generating interactions. Some of these
indications come from model-dependent calculations, e.g.,
in the Nambu and Jona-Lasinio (NJL) model [26]. Re-
cently, however, Geiger and Isgur presented a parameter-
free analysis within a rather general framework consis-
tent with the many empirical constraints (such as the OZI
rule), which shows that a complete set of strong strange-
meson–baryon loops, computed in a model consistent with
the OZI rule, gives (after delicate cancellations) only small
observable ss̄ effects. We therefore do not consider the ss̄
effects from the second order in LI .

3 Strangeness evaluation
with a specified interaction LI

The evaluation of (19) is, in principle, straightforward,
once one specifies two things. The first is the overall de-
scription of hadronic structure, which in practice amounts
to choosing the model for the nucleon state |N0〉; for ex-
ample, choosing some mean-field Hamiltonian such as H0
in (12). The second is the choice of the interaction (we
call it LI) which has the role to generate qq̄ fluctuations
on top of the valence nucleon state |N0〉 (the eigenstate
of H0). Specifying H0 also defines the model single-quark
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solutions, and we can use them as an appropriate wave-
function basis to expand the quark fields q(x) (q = u, d, s)
in terms of creation (U†

K ,D†
K ,S†

K) and annihilation
(UK ,DK ,SK) operators of dressed quarks and antiquarks:

q(x) =
∑
K

(
QK qK(x)e−iωKt + Qc†

K qc
K(x)eiωKt

)
. (21)

Here, qK(r) denotes a model wave function of a quark of
flavour q, where K stands for the set of quantum numbers
labelling a model quark state; for example, in the next sec-
tion we will choose to employ the MIT bag model. Then,
qK(r) will be the solution for the quark in the K-th mode
of the MIT bag.

The field contractions in (19) lead to the sums over
stationary modes of single quarks and antiquarks (such
as the sums (27) and (28), evaluated in the next section),
or, equivalently, to the bound-state propagators of these
dressed model quarks. The sum over quark modes should
naturally run up only to some typical hadron-physics low-
energy cutoff Λ ∼ 0.6 − 1 GeV. This cutoff on quark en-
ergies is dictated by the fact that nonperturbative inter-
actions between quarks operate at low energies, whereas
they gradually weaken and go over to the perturbative
regime at higher energies. (In the aforementioned study of
ss̄ effects of kaon loops [18], Geiger and Isgur have shown
the importance of high-mass intermediate states in these
loops. However, since these are hadronic, meson–baryon
intermediate states, this does not conflict with cutoffs such
as Λ ∼ 1 GeV on quark energies. In other words, the dom-
inant portions of the results of [18] are accounted for by
states lying below 3–3.5 GeV. For comparison, our cut-
off of 1.1 GeV (see Table 1), imposed on the energies of
one strange quark and one antiquark fluctuating on top
of the valence nucleon state, corresponds to total ener-
gies up to 2Λ + MN ∼ 3 GeV as well. This leads us to
believe that we have accounted for the majority of impor-
tant degrees of freedom.) The cutoff values such as ours
are typical of calculations in models of low-energy QCD,
e.g., the NJL model [26]. Obviously, we suppose here that
the nucleon strangeness is the effect of low-energy non-
perturbative QCD. Indeed, this brings us to the question
of what to use concretely for LI in (19) in the explicit
calculation of 〈N | : sΓs : |N〉.

The Lagrangian LI can, of course, be any interac-
tion that can produce fluctuating ss pairs, but the ques-
tion is which interactions can be important in producing
the strangeness of the nucleon. For example, perturbative
QCD interactions probed in high-energy deep inelastic
scattering and revealing the sea of qq pairs, including ss,
should be relatively unimportant in this regard [27,28]. A
theoretical analysis [29] of the CCFR data [30] on strange-
quark distribution functions from neutrino–nucleon deep
inelastic scattering seems to support this point of view. For
example, it finds a very small upper bound on the strange
radius of the nucleon (|〈r2〉s| ≤ 0.005 fm2) [29]. The pos-
sibly enhanced nucleon strangeness is thus expected (see,
e.g., [27]) as an effect of nonperturbative QCD, which, at
low energies, around the nucleon mass scale, is certainly
more important for hadronic structure than perturbative

QCD, and can lead to ss̄ pairs already at small momentum
transfers, i.e., large distances. Nonperturbative QCD is,
after all, responsible for precisely such effects as the forma-
tion of a quark–antiquark condensate 〈0|q̄q|0〉 (q = u, d, s)
and a gluon condensate that characterizes the nonpertur-
bative QCD vacuum. Some investigators (see, e.g., [31], [3,
32], or, for comprehensive reviews, [33–35]) have suggested
that instantons are among the most important nonpertur-
bative configurations of the gluon fields. By now it has cer-
tainly been well established that the effective interaction
between quarks resulting from the presence of instantons
(we call this interaction Linst) plays a very important role
in the formation of hadron structure [33,34], although it
is not responsible for confinement [36,37], as thought pre-
viously. (In the present approach, confinement must be
taken care of by the unperturbed Hamiltonian H0 any-
way.) In our opinion, this Linst is therefore worth testing
as an important candidate for the interactions LI gener-
ating the strange nucleon matrix elements of some oper-
ators. A calculation [26] in the context of the NJL model
seems to be an indication that Linst is indeed the most
important part of LI . The calculation in [26] found that
large strange-pair components were present in the nucleon
only if the instanton-induced interaction was included in
low-energy dynamics.

Here we quote the vacuum-averaged version of the
instanton-induced interaction Linst, derived by [4] in the
instanton-liquid approach but transformed to the x space.
It is convenient to separate it into one-, two- and three-
body pieces (1) L1,L2 and L3, respectively:

L1 = −n

(
4π2

3
ρ3
){

Fu ūR uL + (u ↔ d) + (u ↔ s)
}

+ (R ↔ L) , (22)

L2 = −n

(
4π2

3
ρ3
)2{

Fu Fd

[
(ūRuL)(d̄RdL)

+
3
32

(ūRλauLd̄RλadL − 3
4
ūRσµνλauLd̄LσµνλadL)

]
+ (u ↔ s) + (d ↔ s)

}
+ (R ↔ L) , (23)

L3 = −n

(
4π2

3
ρ3
)3

Fu Fd Fs
1
3!

1
Nc(N2

c − 1)

× εf1f2f3 εg1g2g3

{
2Nc + 1
2Nc + 4

(q̄f1
R qg1

L )(q̄f2
R qg2

L )(q̄f3
R qg3

L )

+
3

8(Nc + 2)
(q̄f1

R qg1
L )(q̄f2

R σµνqg2
L )(q̄f3

R σµνqg3
L )
}

.

(24)

Here, n is the instanton density and Ff (f = u, d, s) are
the characteristic factors (corresponding to inverse effec-
tive quark masses) composed of current light-quark masses
mf , average instanton size ρ ' 1/3 fm [38,3,32], and the
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quark condensate 〈0|qq|0〉. For example, for the u flavour,
Fu ≡ [muρ − (2π2/3)ρ3〈0|uu|0〉]−1, and analogously for
the other flavours. The left (and right) projected com-
ponents are defined in the usual way, uL,R = γ∓u ≡
(1/2)(1 ∓ γ5)u.

In the three-body interaction L3, the indices fi, gi

(i = 1, 2, 3) run over light flavours u, d and s. For ex-
ample, g3 = d means qg3

L = dL. Repeated indices are
summed over. The interaction defined here by L1,L2 and
L3 is actually the same as the well-known one of Shifman,
Vainshtein and Zakharov (SVZ) [2], although the present
three-body term (24) looks much simpler. In fact, Nowak
[39] simply Fierzes away very complicated colour struc-
tures present in the SVZ interaction [2], reshuffling them
to simple prefactors involving the number of quark colours
Nc.

Although Nowak, et al., derives this interaction in the
random instanton liquid model (RILM) with the help of
the mean-field, or quenched, approximation (where the
collective coordinates of instantons and anti-instantons
are randomly distributed, thus neglecting potentially im-
portant correlations) and in the long-wavelength limit,
their version of the interaction induced by small instan-
tons is still considered useful even in the most recent re-
views of instanton physics [35]. [4] took into account the
delocalization of zero modes and long-wavelength prop-
erties (scales > 1/3 fm), arriving at the interaction ba-
sically corresponding to that of SVZ [2], apart from the
effects of smearing over the average size ρ of a small in-
stanton, ρ ' 1/3 fm [38,3,32]. In the limit of no smear-
ing, the SVZ instanton-induced interaction is obtained;
that is, the interaction averaged over the small instan-
ton volume is taken to be the local interaction (22)–(24).
In the long-wavelength limit, it should approximate well
the intermediate-range (∼ 1/3 fm) QCD effects, which are
already of nonperturbative origin, but are still not respon-
sible for confinement appearing at still larger scales.

We also note that the average instanton size ρ ' 1/3
fm = (600MeV)−1 is consistent with what we have said
above about the typical hadronic cutoff scale Λ ∼ 0.6 − 1
GeV. Namely, the effective interaction Linst cannot be op-
erative at energies which would probe distances signifi-
cantly smaller than the average size of these extended ob-
jects, instantons, which produce Linst.

Obviously, the two-body term is the one which,
through (19) and (20), yields the graph in Fig. 2. The con-
tribution to the nucleon strangeness due to the three-body
interaction L3 is exemplified by the last loop in Fig. 1.
Such graphs come about when contractions in (20) are
performed with a strange bilinear in L3. The s̄s bilinear
in the one-body term L1 can produce the strange-quark
loops disconnected from the valence quarks.

We should also comment on the consistency of using
the instanton-induced interaction Linst for LI in (19), even
when we view (19) as a purely perturbative result. If we
take the perturbative viewpoint, why is (19) applicable
not only to parts of LI which come from perturbative in-
teractions such as the perturbative gluon exchange, but
also to Linst (22)–(24) which is of nonperturbative origin?

The point is that the origin of Linst is nonperturbative,
i.e., these effective interactions between quarks are the
consequence of nonperturbative gluon configurations – in-
stantons. However, Linst itself contains a small parameter,
namely the instanton density n, and it is so small that a
perturbative expansion in its powers is possible. Origi-
nal estimates [38], where n ≈ 1.6 × 109 MeV4 = 1 fm−4,
have proved to be reliable, as they also have remained
essentially unchanged [34] in the more recent instanton-
liquid calculations. It is useful to define a “dimensionless
instanton density” ñ by expressing it in units of the aver-
age instanton size ρ, n ≡ ñρ−4. The commonly accepted
value is ρ = 1/600 MeV−1 ' 1/3 fm [3,32,40]. Therefore,
ñ ' 12.4 × 10−3 ' 1/81, and this dimensionless param-
eter indicates that the probability of finding an instan-
ton is small. Obviously ñ is small enough to be used as
the parameter of the perturbative expansion. We should
also keep in mind that this is the instanton density in the
true, nonperturbative QCD vacuum, while in some cir-
cumstances, the appropriate n can be even smaller. No-
tably, [41] has found that in the MIT bag model enlarged
with the instanton-induced interaction (22)–(24), which
is used in the next section for the first evaluations of the
nucleon strangeness using formula (19), the instanton den-
sity is very strongly depleted with respect to the true QCD
vacuum.

Of course, this depletion, relative to the instanton den-
sity in the true QCD vacuum, is just the way to express
the small probability of penetration of the instanton liquid
from the RILM vacuum (modeling the true QCD vacuum
outside the bag) into parts of the volume inside the other-
wise perturbative bag. If one wants, this can be visualized
as occasional penetration into the bag (with a small prob-
ability) by drops of the instanton liquid. It is important
to note that it is not a different kind of liquid, with dif-
ferent properties, but that it must be the same liquid –
namely the one giving rise to the interaction (22)–(24).
For that reason, we use in the instanton-induced inter-
action LI (22)–(24), as usual, the empirical value of the
condensate 〈0|q̄q|0〉.

The nonvanishing (albeit small) probability for pen-
etration of the droplets of instanton liquid from the true
nonperturbative “instanton vacuum” of QCD into the
“perturbative” MIT bag interior explains why, in the case
of the MIT bag, we should be concerned with the stran-
geness coming from the one-body term L1. It is true that
this term does not involve any interaction with valence
quarks and one would thus expect that it is already in-
cluded in the vacuum contribution. Nevertheless, recall
that in the MIT bag model, Donoghue and Nappi [5] ob-
tained the strangeness of the perturbative MIT bag by
subtracting the (negative) nonperturbative vacuum con-
tribution, since everything is measured with respect to
the true nonperturbative QCD vacuum as the referent,
“zero” level. However, if there is a nonvanishing proba-
bility for penetration of droplets of the random instanton
liquid vacuum of QCD, it means that the difference of
the bag interior with respect to the true nonperturbative
QCD vacuum is not so large. Hence, the over-subtracted
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strangeness should be put back in, and this is the reason
for the one-body term L1 contributing to our ss̄ pairs on
top of the vacuum.

4 Instanton-induced strangeness
in the MIT bag model

We now turn to the actual calculation of strange nucleon
matrix elements in a specific model, with the instanton-
induced interaction Linst given by (22)–(24). For definite-
ness, we quote the results for the proton – the neutron
case is quite similar. Using (19), we can write the proton-
strangeness matrix element as

〈N | : s̄Γ s : |N〉 = i
∫ ∞

−∞
dt′ 〈N0|T̂ :

∫
d3x

× s̄(x, t0)Γs(x, t0) : :
∫

d3y Linst(y, t′) : |N0〉 , (25)

where we have kept only the first term in the perturbation
series over low instanton density. We have treated each
of the three parts of Linst (1) separately. The one-body
interaction L1 (22) is the simplest of all. Since no valence
quarks take part in this interaction, the only relevant part
of L1 is

−n

(
4π

3
ρ3
)

Fs[s̄R(y, t′) sL(y, t′) + s̄L(y, t′) sR(y, t′)] .

(26)
Expanding the strange-quark fields s, as in (21) and

contracting them leads to the following contribution of the
one-body interaction L1 (22) to the matrix element (25):

〈N | : s̄Γ s : |N〉L1 = 4π2nρ3Fs

∑
K,L

1
ωK + ωL

×
{∫

d3x s̄K(x)Γsc
L(x)

∫
d3y s̄c

L(y)sK(y) + (s ↔ sc)
}

.

(27)

We now choose the MIT bag as our concrete model for
the nucleon1. Therefore, the wave functions qK(r) (q =
u, d, s) denote the MIT bag model solutions2, K stands for

1 The problem that the MIT bag model has with the break-
ing of chiral symmetry on the bag boundary is cured in var-
ious versions of the chiral bag model by containing the pion
fields outside the bag with quarks, complete with appropriate
boundary conditions. In the models where the bag radius is as
large as in the ordinary MIT bag [42], the pion field outside is
so weak that it does not significantly perturb the quark sec-
tor where our LI acts, and cannot influence the strangeness
much. Therefore, the results obtained in such a chirally invari-
ant, but more complicated, model should not be very different
from those obtained in the simple MIT bag model; so that in
the next section, we stick to the latter for concreteness and
simplicity.

2 We follow the conventions of [43] for the MIT bag wave
functions. See also our more complete account [44], where we
give technicalities in detail.

Table 1. Strange-quark energy levels ωnκ, which can be ex-
cited by the instanton interaction

n κ ωnκ /MeV

0 -1 514.0
0 -2 726.7
0 1 797.4
1 -1 1104.9

the set {n, κ, j3}, where n is the radial excitation number,
and the quantum number κ is determined by the total
and orbital angular momenta j and l, respectively. ωK is
the energy of the quark in the bag state K. With all this,
the one-body contribution to the nucleon strangeness is
completely specified.

The sum over K = {n, κ, j3} and L = {n′, κ′, j′
3} goes

up to the state with n = 1, κ = −1 (corresponding to the
cutoff of about 1.1 GeV), encompassing four lowest-lying
strange quark states displayed in Table 1. The expression
for the contribution of the two-body interaction L2 (23) is
obtained in the same way as (27). However, it is somewhat
more complicated, involving valence quark wave functions
also. Luckily, the terms with σµν cancel out, leaving us
with the proton matrix element

〈N | : s̄Γ s : |N〉L2 =
16
3

π4nρ6FqFs

∑
K,L,±

1
ωK + ωL

×
{∫

d3x s̄K(x)Γsc
L(x)

∫
d3y s̄c

L(y)γ±sK(y)

×
[
2q̄0,−1, 1

2
(y) γ± q0,−1, 1

2
(y)

+ q̄0,−1,− 1
2
(y) γ± q0,−1,− 1

2
(y)

]

+
∫

d3x s̄c
K(x)ΓsL(x)

∫
d3y s̄L(y)γ±sc

K(y)

×
[
2q̄0,−1, 1

2
(y) γ± q0,−1, 1

2
(y)

+ q̄0,−1,− 1
2
(y) γ± q0,−1,− 1

2
(y)

]}
. (28)

Here, q0,−1,± 1
2
(y) is the wave function for the ground state

of the valence quark in the bag, which we take to be the
same for u and d quarks.

Going now to the three-body interaction L3 (24), ex-
pressions become extremely long and complicated, so we
do not write them down here. As seen below, it turns out
that this contribution is much smaller than the preceding
two anyway.

After focusing on the scalar (s̄s) and pseudoscalar
(s̄γ5s) strangeness as the channels preferred by the QCD-
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vacuum fluctuations [1], we have also checked the vector
(s̄γµs) and the axial-vector (s̄γµγ5s) channels.

The calculation of the contribution of the two-body L2
and the three-body L3 instanton interactions is tedious
and in the manipulation of all these formulas we have
relied heavily on Mathematica package [45] for symbolic
computer calculations.

To illustrate how our calculations in the MIT bag mo-
del have been performed, and in which way such a model
choice influences our results, we briefly sketch the calcu-
lation with the one-body part L1 interaction.

4.1 Scalar and pseudoscalar strangeness

Let us first consider the scalar strange-current density s̄s
inside the proton. The expression for the matrix element
can be written as

〈N(p′)|s̄se−iq·x|N(p)〉 = As(q2)ūN (p′)uN (p) , (29)

where q2 = (p−p′)2, and uN are nucleon spinors. As(q2) is
the scalar form factor accounting at for the scalar
strangeness of the proton at q2 = 0.

Calculations inside the bag model can be performed by
making the substitution Γ = 1 and inserting the appro-
priate quark and antiquark wave functions in (27). By a
simple calculation, one can show that the surviving combi-
nation is the one with κ = −1, κ′ = 1 and κ = 1, κ′ = −1,
and (27) reduces to

〈N | : s̄s : |N〉L1 = 4π2nρ3Fs

1∑
n=0

4
ωn,−1 + ω0,1

×
[
N−1(xn,−1)N1(x0,1)

∫
r2dr

× W+(n, −1)W−(0, 1)j0(xn,−1
r

R
)j0(x0,1

r

R
)

+W−(n, −1)W+(0, 1)j1(xn,−1
r

R
)j1(x0,1

r

R
)
]2

.(30)

The normalizations N±1(xn,±1) and the W± factors, re-
lated to the quark wave functions, are given in [43] and
[44].

The above equation represents the contribution to the
strange scalar form factor As(q2 = 0) coming from the
one-body interaction. The remaining contributions from
the L2 and L3 instanton interactions can be calculated
similarly and the results are

〈N | : s̄s : |N〉L1 = 0.035 , (31)
〈N | : s̄s : |N〉L2 = 0.023 , (32)
〈N | : s̄s : |N〉L3 = 2.9 × 10−4 . (33)

Summing them up gives

As(0)Linst = 0.058. (34)

The evaluation of space integrals has been performed nu-
merically using the following values: the bag radius R=

1/197.3 MeV−1 ≈1 fm, the average instanton size ρ=1/600
MeV−1 and the instanton density n = 2.66 × 107 MeV4,
which is the depleted instanton density in the MIT bag
as found in [41]. Moreover, we have taken the strange
quark mass ms=200 MeV and the valence quark mass
mu = md ≡ mq=8 MeV. The quark condensate that fol-
lows from the Gell-Mann–Oakes–Renner relation for these
quark masses and the empirical meson masses is 〈0|q̄q|0〉 ≈
(−200MeV)3.

The pseudoscalar strange form factor Bs is defined
as

〈N(p′)|s̄γ5se
−iq·x|N(p)〉 = Bs(q2)ūN (p′)γ5uN (p) . (35)

For the pseudoscalar strange current s̄γ5s, (27) gives the
vanishing one-body contribution

〈N | : s̄γ5s : |N〉L1 = 0 . (36)

Analogously, we obtain the vanishing result for the other
two instanton interactions, i.e., 〈N | : s̄γ5s : |N〉Linst = 0 .
We thus obtain

Bs(0)Linst = 0 (37)

as the vanishing total instanton contribution to the pseu-
doscalar form factor.

4.2 Vector and axial-vector strangeness

In (5) the vector strangeness has been displayed in terms
of the Dirac (F s

1 ) and the Pauli (F s
2 ) form factors. For

comparison with experimental data, the (strange) Sachs
form factors Gs

E (electric) and Gs
M (magnetic) are widely

used:

Gs
E(q2) = F s

1 (q2) +
q2

4M2
N

F s
2 (q2) ,

Gs
M (q2) = F s

1 (q2) + F s
2 (q2) . (38)

By taking the nonrelativistic nucleon spinor

uN (p, s) =

√
E + MN

2E

(
χs

σ · p
E + mχs

)
(39)

in the Breit frame defined by

qµ = (q0,q) = (0,qB) ,

p =
qB

2
, p′ = −qB

2
, (40)

the components of the vector current take the form

〈N(p′, s′)|V s
0 |N(p, s)〉 =

m

E
χ†

s′χsG
s
E(−q2

B) , (41)

〈N(p′, s′)|Vs|N(p, s)〉 =
1

2E
χ†

s′ i(σ × qB)χsG
s
M (−q2

B)

. (42)

In order to calculate the contribution of the instanton-
induced vector strange current inside the MIT bag, we
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have to identify the form factors in (42) with the Fourier-
transformed vector current within the bag:

〈N(p′)| : V s
µ : |N(p)〉Linst

= 〈N(p′)| :
∫

d3r e−iqB ·rs̄(r)γµs(r) : |N(p)〉Linst , (43)

using the static limit q → 0. The check with the V s
0 compo-

nent of the vector current gives zero, i.e., Gs
E(q2 = 0)inst =

0, which is as it should be.
A similar calculation for the space components Vs

shows a nontrivial cancellation among the contributions
of quarks in the loop with different spin orientations, pro-
ducing the total result

Gs
M (0)Linst = 0 . (44)

This implies the vanishing strange magnetic moment

µs = F s
2 (0) = 0 , (45)

which is compatible with the recent measurements at
MIT/Bates [46] and even more recent ones at TJNAF
(JLab) [47].

The equation in (9) then implies that the baryomag-
netic moment is

µ(0)
p = 1 + κp + κn = 0.88 µN (46)

The estimation of the axial-vector strangeness can
be done along the same lines. The form-factor decompo-
sition, assuming the G-parity symmetry of the strong in-
teractions, has the form

〈N(p′)|s̄γµγ5s|N(p)〉
= ūN (p′)

(
γµγ5G

s
1(q

2) +
qµ

2MN
γ5G

s
2(q

2)
)

ūN (p). (47)

The instanton contribution to such a matrix element
can be calculated as

〈N(p′)| : As
µ : |N(p)〉Linst

= 〈N(p′)| :
∫

d3re−iqB ·rs̄(r)γµγ5s(r) : |N(p)〉Linst (48)

and should be compared with the axial form factors de-
fined in the Breit frame as

〈N(p′, s′)|As|N(p, s)〉 = Gs
A(0)χ†

s′σχs . (49)

Again, it turns out that the axial-vector strangeness in-
duced by the instanton interaction is vanishing,

Gs
A(0)Linst = 0 . (50)

5 Discussion and conclusions

This paper deals with strange quarks at very small mo-
mentum transfers Q2, as opposed to the high values of
Q2, where such nonvalence components of the nucleon

are undisputable, and also treatable using more standard
methods of perturbative QCD and parton models. The
original MIT bag model [48–50] represents a suitable start-
ing point in predicting the low-energy properties of low-
mass hadrons. In this model, Rbag imitates the separations
Rconfining ∼ 1 fm at which confinement effects are impor-
tant, corresponding to the confining scale ΛQCD ' 100 to
300 MeV. Short-distance effects are supposedly taken care
of by the perturbative one-gluon exchange.

However, in order to account for the effects at inter-
mediate distances, i.e., at momentum scales Q ∼ ΛχSB '
0.6 – 1 GeV, the effective interaction (1) and (22)–(24), in-
duced by the liquid of small instantons (of the average size
ρ = 1/3 fm) appears appropriate. Of course, the effects
of the instanton-induced interactions are not included in
Donoghue and Nappi’s [5] naive bag-model relation (3)
for the scalar nucleon strangeness, and the relative impor-
tance of this naive strangeness and the instanton effects is
precisely what interests us here.

An advantage of formula (19) is that, at least in princi-
ple, it treats the scalar, pseudoscalar, vector, axial, tensor
and pseudotensor nucleon strangeness in a unified man-
ner – one just has to specify what Γ is. Within a chosen
nucleon model, the evaluation of (19) would proceed in
essentially the same way for each Γ , except for technical
details.

In the scalar case (Γ = 1), the naive bag-model stran-
geness (3) is actually rather large for standard values of
parameters. For our values, given at the end of Sect. 4.1,
it is

ANbag
s ≡ −〈0|q̄q|0〉Vbag = 4.36 , (51)

which is much larger than the instanton-induced contri-
bution (34), and dominates the summed strangeness

As ≡ ANbag
s + As(0)Linst = 4.42 . (52)

Owing to the use of a somewhat smaller value of the
quark condensate, Donoghue and Nappi [5] obtain 3.6 for
this naive strangeness, which is still rather large. ANbag

s

depends very strongly on the model size parameter Rbag

since Vbag = R3
bag4π/3. For example, ANbag

s would de-
crease by a factor of 2 if Rbag = 0.8 fm, a nucleon size
which may be more acceptable, as the standard MIT bag
value of 1 fm seems too large, (see, e.g., [51]). However,
since the model dependence on the bag radius is similar
for other presently interesting matrix elements, the model
dependence largely cancels out when ratios are formed.
In particular, the instanton-induced contribution (34) re-
mains small in comparison with the naive nucleon-bag
strangeness:

ANbag
s

As(0)Linst

∼ 75 , (53)

for reasonable variations of the radius parameter.
Obviously, the contribution, due to the difference in

the condensate with respect to the true, nonperturbative
QCD vacuum, dominates the strangeness in the nucleon
bag. Admittedly, the instanton-induced contribution of
this size would be obtained in the calculation of (34) if,
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inside the MIT bag, the nondepleted instanton density
n = 1.6 × 109 MeV4 were used. However, we consider this
merely a consistency check, and not an alternative de-
scription of strangeness in the MIT bag. This is because
using the instanton density appropriate to the nonpertur-
bative QCD vacuum containing the large-quark conden-
sate would imply that the nonperturbative QCD vacuum
and the quark condensate are assumed to be not only out-
side, but also inside the bag. This would indeed enable
As(0)Linst to replace ANbag

s in full, but would also make
the MIT bag description inconsistent [41].

The scalar strangeness is special because of nonvanish-
ing scalar q̄q condensates of the QCD vacuum; this makes
it more natural that scalar strangeness is larger than vec-
tor, axial, or other kinds of strangeness. This is especially
clear in our approach applied to the MIT bag model. In
this model, the scalar strangeness comes mostly from the
change of the scalar q̄q condensates in the true QCD vac-
uum and their absence in the perturbative vacuum in-
side the cavity [5], while only the relatively small remain-
der in the present paper comes from the response of the
valence ground state to the strangeness-sensitive probe.
However, such a response is all that exists in the case of
the pseudoscalar, vector, axial, etc., nucleon strangeness,
since there are no pseudoscalar, vector, axial, etc., QCD-
vacuum condensates either inside or outside the cavity.
Since such responses tend to be much smaller than the
nonperturbative vacuum contributions, significant differ-
ences in magnitude between the scalar and other kinds of
strangeness are very natural in our approach. In fact, in
the present case of the MIT bag model, we find the van-
ishing first-order contribution to the vector strangeness.
The vanishing first-order contributions are also found for
the pseudoscalar and axial strangeness of the nucleon.

Thus, our results confirm the conjecture of [1] for the
case of the scalar strangeness.

Thus it is understandable why the results for the “non-
scalar” strange quantities, such as the
strangeness nucleon magnetic form factor [10–14,16,17,
19–22] or the strangeness electric mean-square radius [10,
13–22] vary so much, even by the sign, from one model to
another: The non-scalar strange quantities should all be
rather small, and artifacts of various models very easily
put it on either side of the zero.

Our results are also consistent with the most recent
measurements of the strange vector form factors at low
momentum transfer, Q2 <∼ 1 GeV. The experimental
strange magnetic form factor of the nucleon at Q2 =
0.1 (GeV/c)2, Gs

M = 0.23 ± 0.37 ± 0.15 ± 0.19 µN , ob-
tained at MIT/Bates [46] is consistent with the absence
of strange quarks, but the error bars are large. However,
the main conclusion of our approach, that channels other
than the scalar one should not be appreciably affected
by strange quarks, seems to get support especially from
the most recent and very precise TJNAF (JLab) measure-
ment [47], which yields the small strange-vector form fac-
tors of Q2 = 0.48 (GeV/c)2, Gs

E +0.39Gs
M = 0.023±0.034

±0.022±0.026 nm Furthermore, the HAPPEX Collabora-
tion [47] plans to improve the accuracy of this result by a

factor of two in 1999. Nevertheless, its small central value,
which is consistent with zero, and small errors already ex-
clude some of the more generous predictions [10,21] for
the strangeness (but not [52,14] for example).

Acknowledgements. D.K. and I.P. thank I. Zahed for getting
them started in this problem, and for many illuminating dis-
cussions. D.K., K.K. and I.P. acknowledge the partial support
of the EU contract CI1*–CT91–0893 (HSMU), and the hospi-
tality of the Physics Department of the Bielefeld University.

References

1. A.R. Zhitnitsky, Phys. Rev. D 55, 3006 (1997)
2. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys.

B 163, 46 (1980)
3. D.I. Diakonov, V.Y. Petrov, Nucl. Phys. B 245, 259

(1984)
4. M.A. Nowak, J.J.M. Verbaarschot, I. Zahed, Nucl. Phys.

B 324, 1 (1989)
5. J.F. Donoghue, C.R. Nappi, Phys. Lett. 168B, 105 (1986)
6. V.M. Khatsimovskii, I.B. Khriplovich, A.R. Zhitnitsky, Z.

Phys. C 36, 455 (1987)
7. J. Ellis, M. Karliner, Phys. Lett. B 341, 397 (1995)
8. J. Ashman, et al., Phys. Lett. 206B, 364 (1988)
9. J. Ashman, et al., Nucl. Phys. B 328, 1 (1989)

10. R.L. Jaffe, Phys. Lett. B 229, 275 (1989)
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12. D. Klabučar, I. Picek, Nucl. Phys. A 514, 689 (1990)
13. N.W. Park, J. Schechter, H. Weigel, Phys. Rev. D 43, 869

(1991)
14. M.J. Musolf, M. Burkardt, Z. Phys. C 61, 433 (1994)
15. H. Forkel, et al., Phys. Rev. C 50, 3108 (1994)
16. S.-T. Hong, B.-Y. Park, D.-P. Min, Phys. Lett. B 414,

229 (1997)
17. S.T. Hong, B.Y. Park, Nucl. Phys. A 561, 525 (1993)
18. P. Geiger, N. Isgur, Phys. Rev. D 55, 299 (1997)
19. D.B. Leinweber, Phys. Rev. D 53, 5115 (1996)
20. D.B. Leinweber, Nucl. Phys. A 585, 341c (1995)
21. H.W. Hammer, U.-G. Meissner, D. Drechsel, Phys. Lett.

B 367, 323 (1996)
22. C.V. Christov, et al., Prog. Part. Nucl. Phys. 37, 1 (1996)
23. L.A. Ahrens, et al., Phys. Rev. D 35, 785 (1987)
24. R.P. Feynman, Phys. Rev. 56, 340 (1939)
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